Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
debakarr
GitHub Repository: debakarr/machinelearning
Path: blob/master/Part 3 - Classification/Decision Tree/[R] Decision Tree.ipynb
1009 views
Kernel: R

Decision Tree

Data preprocessing

# Importing the dataset dataset = read.csv('Social_Network_Ads.csv') dataset = dataset[3:5]
head(dataset, 10)
# Encoding the target feature as factor dataset$Purchased = factor(dataset$Purchased, levels = c(0, 1))
# Splitting the dataset into the Training set and Test set # install.packages('caTools') library(caTools) set.seed(123) split = sample.split(dataset$Purchased, SplitRatio = 0.80) training_set = subset(dataset, split == TRUE) test_set = subset(dataset, split == FALSE)
head(training_set, 10)
head(test_set, 10)
# Feature Scaling* training_set[-3] = scale(training_set[-3]) test_set[-3] = scale(test_set[-3])
head(training_set, 10)
head(test_set, 10)

Fitting Decision Tree classifier to the Training set

library(rpart) classifier = rpart(formula = Purchased ~ ., data = training_set)

Predicting the Test set results

y_pred = predict(classifier, newdata = test_set[-3], type = 'class')
head(y_pred, 10)
head(test_set[3], 10)

Making the Confusion Matrix

cm = table(test_set[, 3], y_pred) cm
y_pred 0 1 0 43 8 1 6 23

classifier made 43 + 23 = 66 correct prediction and 6 + 8 = 14 incoreect predictions.


Visualising the Training set results

library(ElemStatLearn) set = training_set X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01) X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01) grid_set = expand.grid(X1, X2) colnames(grid_set) = c('Age', 'EstimatedSalary') y_grid = predict(classifier, newdata = grid_set, type = 'class') plot(set[, -3], main = 'Decision Tree (Training set)', xlab = 'Age', ylab = 'Estimated Salary', xlim = range(X1), ylim = range(X2)) contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE) points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato')) points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'), col='white') legend("topright", legend = c("0", "1"), pch = 16, col = c('red3', 'green4'))
Image in a Jupyter notebook

Visualising the Test set results

library(ElemStatLearn) set = test_set X1 = seq(min(set[, 1]) - 1, max(set[, 1]) + 1, by = 0.01) X2 = seq(min(set[, 2]) - 1, max(set[, 2]) + 1, by = 0.01) grid_set = expand.grid(X1, X2) colnames(grid_set) = c('Age', 'EstimatedSalary') y_grid = predict(classifier, newdata = grid_set, type = 'class') plot(set[, -3], main = 'Decision Tree (Test set)', xlab = 'Age', ylab = 'Estimated Salary', xlim = range(X1), ylim = range(X2)) contour(X1, X2, matrix(as.numeric(y_grid), length(X1), length(X2)), add = TRUE) points(grid_set, pch = '.', col = ifelse(y_grid == 1, 'springgreen3', 'tomato')) points(set, pch = 21, bg = ifelse(set[, 3] == 1, 'green4', 'red3'), col='white') legend("topright", legend = c("0", "1"), pch = 16, col = c('red3', 'green4'))
Image in a Jupyter notebook

Things to remmember while making decison tree classifier:

  • Normally it overfits the data. But here in R due to 'rpart' library (a very powerful and famous library), the overfitting is drastically reduced as compare to Decision Tree Model in python.

  • There is no need to Scale the features as decision tree does not depends on Euclidean distance. We are using Feature Scaling here just to get a plot with better resolution. If you ammit scaling, then for example the above case the vector size will be about 200+ GB which is not possible to plot.



If we dont apply feature scaling (i.e. do not run cell 7 all through cell 9), then we can have a look at the decision tree. For this we just need to run 2 lines of code


Constructing decision tree

plot(classifier) text(classifier)
Image in a Jupyter notebook